712 research outputs found

    Identifying ecosystem key factors to support sustainable water management

    Get PDF
    There is a growing consensus that sustainable development requires a behavioral change, forced by firm decision-making. However, existing decision-supporting tools are unlikely to provide relevant information, hampered by the complexity of combined socio-economic and natural systems. Protecting the intrinsic value of ecosystems and providing sufficient natural resources for human use at the same time leads up to a wide span of management, ranging from species traits to governance. The aim of this study is to investigate the interactions between the natural and economic systems from the perspective of sustainable development. The way to reduce systems complexity by selecting key factors of ecosystem functioning for policy and management purposes is discussed. To achieve this, the Pentatope Model is used as a holistic framework, an ecosystem nodes network is developed to select key factors, and a combined natural and socio-economic valuation scheme is drawn. These key factors—abiotic resources and conditions, biodiversity, and biomass—are considered fundamental to the ecosystem properties habitat range and carrying capacity. Their characteristics are discussed in relation to sustainable water management. The conclusion is that sustainable development requires environmental decision-making that includes the intrinsic natural value, and should be supported by ecological modelling, additional environmental quality standards, and substance balances

    Distribution and ecology of the stoneflies (Plecoptera) of Flanders (Belgium)

    Get PDF
    Based on a literature survey and the identification of all available collection material from Flanders, a checklist is presented, distribution maps are plotted and the relationship between the occurrence of the different species and water characteristics is analysed. Of the sixteen stonefly species that have been recorded, three are now extinct in Flanders (Isogenus nubecida, Taeniopteryx nebulosa and T. schoenemundi), while the remaining species are rare. The occurence of stoneflies is almost restricted to small brooks, while observations in larger watercourses are almost lacking. Although a few records may indicate that some larger watercourses have recently been recolonised, these observations consisted of single specimens and might be due to drift. Most stonefly population are strongly isolated and therefore extremely vulnerable. Small brooks in the Campine region (northeast Flanders), which are characterised by a lower pH and a lower conductivity, contained a different stonefly community than the small brooks in the rest of Flanders. Leuctra pseudosignifera, Nemoura marginata and Protonemura intricata are mainly found in small brooks in the loamy region, Amphinemura staandfussi, Isoperla grammatica, Leuctra fusca, L.hippopus, N. avicularis and P. meyeri mainly occur in small Campine brooks, while L. nigra, N. cinerea and Nemurella pictetii can be found in both types. Nemoura dubitans can typically be found in stagnant water fed with freatic water. Sustainable populations of these stonefly species can only be achieved when their present habitats are adequately protected and in addition, measures should be taken to connect and enlarge the remaining populations

    Municipal wastewater treatment with pond technology : historical review and future outlook

    No full text
    Facing an unprecedented population growth, it is difficult to overstress the assets for wastewater treatment of waste stabilization ponds (WSPs), i.e. high removal efficiency, simplicity, and low cost, which have been recognized by numerous scientists and operators. However, stricter discharge standards, changes in wastewater compounds, high emissions of greenhouse gases, and elevated land prices have led to their replacements in many places. This review aims at delivering a comprehensive overview of the historical development and current state of WSPs, and providing further insights to deal with their limitations in the future. The 21st century is witnessing changes in the way of approaching conventional problems in pond technology, in which WSPs should no longer be considered as a low treatment technology. Advanced models and technologies have been integrated for better design, control, and management. The roles of algae, which have been crucial as solar-powered aeration, will continue being a key solution. Yet, the separation of suspended algae to avoid deterioration of the effluent remains a major challenge in WSPs while in the case of high algal rate pond, further research is needed to maximize algal growth yield, select proper strains, and optimize harvesting methods to put algal biomass production in practice. Significant gaps need to be filled in understanding mechanisms of greenhouse gas emission, climate change mitigation, pond ecosystem services, and the fate and toxicity of emerging contaminants. From these insights, adaptation strategies are developed to deal with new opportunities and future challenges

    Opportunities and challenges for the sustainability of lakes and reservoirs in relation to the sustainable development goals (SDGs)

    Get PDF
    Emerging global threats, such as biological invasions, climate change, land use intensification, and water depletion, endanger the sustainable future of lakes and reservoirs. To deal with these threats, a multidimensional view on the protection and exploitation of lakes and reservoirs is needed. The holistic approach needs to contain not just the development of economy and society but also take into account the negative impacts of this growth on the environment, from that, the balance between the three dimensions can be sustained to reach a sustainable future. As such, this paper provides a comprehensive review on future opportunities and challenges for the sustainable development of lakes and reservoirs via a critical analysis on their contribution to individual and subsets of the Sustainable Development Goals (SDGs). Currently, lakes and reservoirs are key freshwater resources. They play crucial roles in human societies for drinking water provision, food production (via fisheries, aquaculture, and the irrigation of agricultural lands), recreation, energy provision (via hydropower dams), wastewater treatment, and flood and drought control. Because of the (mostly) recent intensive exploitations, many lakes and reservoirs are severely deteriorated. In recent years, physical (habitat) degradation has become very important while eutrophication remains the main issue for many lakes and ponds worldwide. Besides constant threats from anthropogenic activities, such as urbanization, industry, aquaculture, and watercourse alterations, climate change and emerging contaminants, such as microplastics and antimicrobial resistance, can generate a global problem for the sustainability of lakes and reservoirs. In relation to the SDGs, the actions for achieving the sustainability of lakes and reservoirs have positive links with the SDGs related to environmental dimensions (Goals 6, 13, 14, and 15) as they are mutually reinforcing each other. On the other hand, these actions have direct potential conflicts with the SDGs related to social and economic dimensions (Goals 1, 2, 3 and 8). From these interlinkages, we propose 22 indicators that can be used by decision makers for monitoring and assessing the sustainable development of lakes and reservoirs

    Freshwater ecosystem services in mining regions : modelling options for policy development support

    Get PDF
    The ecosystem services (ES) approach offers an integrated perspective of social-ecological systems, suitable for holistic assessments of mining impacts. Yet for ES models to be policy-relevant, methodological consensus in mining contexts is needed. We review articles assessing ES in mining areas focusing on freshwater components and policy support potential. Twenty-six articles were analysed concerning (i) methodological complexity (data types, number of parameters, processes and ecosystem-human integration level) and (ii) potential applicability for policy development (communication of uncertainties, scenario simulation, stakeholder participation and management recommendations). Articles illustrate mining impacts on ES through valuation exercises mostly. However, the lack of ground-and surface-water measurements, as well as insufficient representation of the connectivity among soil, water and humans, leave room for improvements. Inclusion of mining-specific environmental stressors models, increasing resolution of topographies, determination of baseline ES patterns and inclusion of multi-stakeholder perspectives are advantageous for policy support. We argue that achieving more holistic assessments exhorts practitioners to aim for high social-ecological connectivity using mechanistic models where possible and using inductive methods only where necessary. Due to data constraints, cause-effect networks might be the most feasible and best solution. Thus, a policy-oriented framework is proposed, in which data science is directed to environmental modelling for analysis of mining impacts on water ES

    Integrated ecological modelling for decision support in river management: a lowland river case study (Cauca river in Colombia)

    Get PDF
    Several practical concepts and software systems have been recently developed in the issue of environmental decision support. However, the application of ecological modelling approaches that integrate hydrodynamic, physical-chemical, and biological components sub-models for predicting macroinvertebrates in rivers, is rather limited and hardly described in literature. The Cauca river is one of most severe cases of contamination for domestic and industrial wastewater discharges in Colombia. One of the most sensitive problems in the Cauca river is the decrease of dissolved oxygen with concentrations near to zero (0) mg/l in some monitoring stations especially during dry season (low flows). Low DO levels affect the ecosystem equilibrium and the functioning and survival of biological communities. In this research an integration of habitat suitability models with the hydrodynamic and physical-chemical water quality model MIKE11 was performed. Ecological models (statistical models) that allow predicting the occurrence and the abundance of macroinvertebrates (Ephemeroptera, Trichoptera and Haplotaxida) in this river under different conditions were built. The integrated ecological model allows to model and to assess the ecological impact of wastewater discharges into the Cauca river and can help to calculate the needed reductions in discharges of organic matter to meet biological quality criteria in this river

    Selecting relevant predictors: impact of variable selection on model performance, uncertainty and applicability of models in environmental decision making

    Get PDF
    One of the crucial steps when developing models is the selection of appropriate variables. In this research we assessed the impact variable selection on the model performance and model applicability. Regression trees were built to understand the relationship between the ecological water quality and the physicalchemical and hydromorphological variables. Different model parameterizations and three combinations of explanatory variables were used for developing the trees. Once constructed, they were integrated with the water quality model (PEGASE) and used to simulate the future ecological water quality. These simulations were summarized per combination of explanatory variables and compared. Three key messages summarize our conclusions. First, it was confirmed that different parameterizations alter the statistical reliability of the trees produced. Secondly, it was found that statistical reliability of the models remained stable when different combinations of explanatory variables were implemented. The determination coefficient (R²) ranged from 0.68 to 0.86; Kappa statistic (K) ranged from 0.15 and 0.46; and the percentage of Correctly Classified Instances (CCI) from 33 to 59%. Thirdly, when applying the models on an independent dataset consisting of future physical-chemical water quality data, different conclusions may be taken, depending on the combination of variables used
    • …
    corecore